Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(10): 5165-5175, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38437009

RESUMO

Uridine diphosphate-glycosyltransferase (UGT) is a key phase II enzyme in the insect detoxification system. Pyrethroids are commonly used to control the destructive wheat aphid Rhopalosiphum padi. In this study, we found a highly expressed UGT gene, RpUGT344D38, in both λ-cyhalothrin (LCR)- and bifenthrin (BTR)-resistant strains of R. padi. After exposure to λ-cyhalothrin and bifenthrin, the expression levels of RpUGT344D38 were significantly increased in the resistant strains. Knockdown of RpUGT344D38 did not affect the resistance of BTR, but it did significantly increase the susceptibility of LCR aphids to λ-cyhalothrin. Molecular docking analysis demonstrated that RpUGT344D38 had a stable binding interaction with both bifenthrin and λ-cyhalothrin. The recombinant RpUGT344D38 was able to metabolize 50% of λ-cyhalothrin. This study provides a comprehensive analysis of the role of RpUGT344D38 in the resistance of R. padi to bifenthrin and λ-cyhalothrin, contributing to a better understanding of aphid resistance to pyrethroids.


Assuntos
Afídeos , Inseticidas , Nitrilas , Piretrinas , Animais , Simulação de Acoplamento Molecular
2.
Bull Entomol Res ; 114(1): 49-56, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180110

RESUMO

Aphis spiraecola Patch is one of the most economically important tree fruit pests worldwide. The pyrethroid insecticide lambda-cyhalothrin is commonly used to control A. spiraecola. In this 2-year study, we quantified the resistance level of A. spiraecola to lambda-cyhalothrin in different regions of the Shaanxi province, China. The results showed that A. spiraecola had reached extremely high resistance levels with a 174-fold resistance ratio (RR) found in the Xunyi region. In addition, we compared the enzymatic activity and expression level of P450 genes among eight A. spiraecola populations. The P450 activity of A. spiraecola was significantly increased in five regions (Xunyi, Liquan, Fengxiang, Luochuan, and Xinping) compared to susceptible strain (SS). The expression levels of CYP6CY7, CYP6CY14, CYP6CY22, P4504C1-like, P4506a13, CYP4CZ1, CYP380C47, and CYP4CJ2 genes were significantly increased under lambda-cyhalothrin treatment and in the resistant field populations. A L1014F mutation in the sodium channel gene was found and the mutation rate was positively correlated with the LC50 of lambda-cyhalothrin. In conclusion, the levels of lambda-cyhalothrin resistance of A. spiraecola field populations were associated with P450s and L1014F mutations. Our combined findings provide evidence on the resistance mechanism of A. spiraecola to lambda-cyhalothrin and give a theoretical basis for rational and effective control of this pest species.


Assuntos
Afídeos , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Afídeos/genética , Piretrinas/farmacologia , Nitrilas/farmacologia , Mutação , Canais de Sódio Disparados por Voltagem/genética , Expressão Gênica , Inseticidas/farmacologia , Resistência a Inseticidas/genética
3.
Pestic Biochem Physiol ; 194: 105528, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532337

RESUMO

Uridine diphosphate-glucuronosyltransferases (UGTs) are major multifunctional detoxification phase II enzymes involved in the metabolic detoxification of xenobiotics. However, their roles in insecticides resistance are still unclear. In this study, we identified two UGTs genes (UGT2B13 and UGT2C1) in Rhopalosiphum padi, a serious insect pest of wheat worldwide. Bioassays results showed that the resistance ratio of R. padi resistance strain (LC-R) to lambda-cyhalothrin (LC) was 2963.8 fold. The roles of UGT2B13 and UGT2C1 in lambda-cyhalothrin resistance were evaluated. Results indicated that the UGTs contents were significantly increased in the LC resistant strain of R. padi. UGT2B13 and UGT2C1 were significantly overexpressed in the LC-R strain. Transcription levels of UGT2B13 and UGT2C1 were relatively higher in the gut of LC-R strain. RNA interference (RNAi) of UGT2B13 or UGT2C1 significantly decreased the UGTs contents of the LC-R aphids and increased mortality of R. padi exposure to the LC50 concentration of LC. This study provides a new view that UGTs are involved in LC resistance of R. padi. The findings will promote further work to detailed the functions of UGTs in the metabolism resistance of insects to insecticides.


Assuntos
Afídeos , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Piretrinas/farmacologia , Nitrilas/farmacologia , Resistência a Inseticidas/genética
4.
J Pers Med ; 13(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36836536

RESUMO

Anaplasma phagocytophilum, the aetiologic agent of human granulocytic anaplasmosis (HGA), is an obligate intracellular Gram-negative bacterium. During infection, A. phagocytophilum enhances the adhesion of neutrophils to the infected endothelial cells. However, the bacterial factors contributing to this phenomenon remain unknown. In this study, we characterized a type IV secretion system substrate of A. phagocytophilum, AFAP (an actin filament-associated Anaplasma phagocytophilum protein) and found that it dynamically changed its pattern and subcellular location in cells and enhanced cell adhesion. Tandem affinity purification combined with mass spectrometry identified host nucleolin as an AFAP-interacting protein. Further study showed the disruption of nucleolin by RNA interference, and the treatment of a nucleolin-binding DNA aptamer AS1411 attenuated AFAP-mediated cell adhesion, indicating that AFAP enhanced cell adhesion in a nucleolin-dependent manner. The characterization of cell adhesion-enhancing AFAP and the identification of host nucleolin as its interaction partner may help understand the mechanism underlying A. phagocytophilum-promoting cell adhesion, facilitating the elucidation of HGA pathogenesis.

5.
Insect Mol Biol ; 31(4): 471-481, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35312201

RESUMO

Insect octopamine (OA) receptors are G-protein coupled receptors (GPCRs) that play essential roles in physiological and behavioural processes. However, there is little information about the function of OA receptors in the aphids' response to stress. From the genome sequence of Rhopalosiphum padi genome sequence, a cosmopolitan cereal pest, we identified six OA receptor genes RpOAMB, RpOctR, RpOctß1R, RpOctß2R, RpOctß3R, RpOctR-like with two, one, one, four, four, seven exons, respectively. All the OA receptors contain seven transmembrane domains, which were the signature of GPCRs. Our results showed that (1) the contents of OA increased significantly after food starvation, (2) the transcription levels of RpOAMB, RpOctR, RpOctß2R and RpOctß3R increased after starvation and were restored after re-feeding, and (3) the expression levels of these four genes decreased significantly 48 h post-injection of dsRNA that targeted the respective genes. Knockdown of RpOctR, RpOctß2R or RpOctß3R genes significantly increased aphid mortality under 24 h starvation conditions. Mortality of R. padi injected with dsRpOctR or dsRpOctß2R was significantly higher than control under 48 h starvation treatments. This is the first report on the role of OA receptors in the starvation response of aphids. The current study provides knowledge for a better understanding the physiological roles of insect OA receptors.


Assuntos
Afídeos , Animais , Afídeos/genética , Receptores de Amina Biogênica
6.
Microb Pathog ; 147: 104439, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32768516

RESUMO

Anaplasma phagocytophilum, the aetiologic agent of human granulocytic anaplasmosis (HGA) is an obligate intracellular Gram-negative bacterium. During intracellular replication, A. phagocytophilum interacts with many host cell components including actin cytoskeleton. However the bacterial factors contributing to the interaction between A. phagocytophilum and actin filaments remain unknown. In this study we identified a novel type IV secretion system substrate of A. phagocytophilum by employing TEM-1 ß-lactamase based protein translocation assay, and found it is an actin filament-associated protein. Here, we name this protein as an actin filament-associated Anaplasma phagocytophilumprotein (AFAP). Further analysis showed that the middle region of AFAP harboring four tandem repeats is involved in its interaction with actin filaments. The identification and characterization of an actin filament-associated A. phagocytophilum protein in this study may help understand the interaction between A. phagocytophilum and actin cytoskeleton of its host cells, facilitating the elucidation of HGA pathogenesis.


Assuntos
Anaplasma phagocytophilum , Anaplasmose , Citoesqueleto de Actina , Anaplasma phagocytophilum/genética , Animais , Proteínas de Bactérias/genética , Humanos , Sistemas de Secreção Tipo IV
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...